Assessing Approximate Inference for Binary Gaussian Process Classification
نویسندگان
چکیده
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace’s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace’s method.
منابع مشابه
Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression
We present a new variational inference algorithm for Gaussian process regression with non-conjugate likelihood functions, with application to a wide array of problems including binary and multi-class classification, and ordinal regression. Our method constructs a concave lower bound that is optimized using an efficient fixed-point updating algorithm. We show that the new algorithm has highly co...
متن کاملApproximations for Binary Gaussian Process Classification
We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the sui...
متن کاملGaussian Kullback-Leibler approximate inference
We investigate Gaussian Kullback-Leibler (G-KL) variational approximate inference techniques for Bayesian generalised linear models and various extensions. In particular we make the following novel contributions: sufficient conditions for which the G-KL objective is differentiable and convex are described; constrained parameterisations of Gaussian covariance that make G-KL methods fast and scal...
متن کاملApproximate Inference for Robust Gaussian Process Regression
Gaussian process (GP) priors have been successfully used in non-parametric Bayesian regression and classification models. Inference can be performed analytically only for the regression model with Gaussian noise. For all other likelihood models inference is intractable and various approximation techniques have been proposed. In recent years expectation-propagation (EP) has been developed as a g...
متن کاملOn Approximate Inference for Generalized Gaussian Process Models
A generalized Gaussian process model (GGPM) is a unifying framework that encompasses many existing Gaussian process (GP) models, such as GP regression, classification, and counting. In the GGPM framework, the observation likelihood of the GP model is itself parameterized using the exponential family distribution (EFD). In this paper, we consider efficient algorithms for approximate inference on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2005